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Reflection of gravity waves by a steep beach with
a porous bed
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Department CISM, London Guildhall University, 100 Minories, London EC3N 1JY, UK

(Received 14 October 1996 and in revised form 7 August)

Solutions are determined for normally incident non-breaking linear gravity waves in a
perfect fluid over a porous plane bed of arbitrary slope α both with and without bed
friction. For simplicity, computations are restricted to α = π/2m,m ∈ N . Modifications
to wave height transformations due to percolation and to friction are determined for
a variety of slopes and coefficients. The effect on the reflection coefficient Rf is also
studied and excellent qualitative agreement is found with recent work on damping
and reflection by permeable structures. In particular, for a choice of parameters, the
Rf response is determined in closed form.

1. Introduction
One of the earlier authors to study the effect on waves of percolation in a permeable

sea bed was Putnam (1949). In that work, the modelling allowed consideration of
a D’Arcy-law-type flow within the porous bed material. Both the impermeable sea
floor and the extremity of the porous layer above it (sea bottom) were assumed
to be horizontal and it was further assumed that a simple harmonic progressing
wave potential existed at this bottom boundary, the pressure fluctuation of the wave
driving dissipative currents within the porous layer. This simplified model allowed
prediction of a dissipation function which when coupled with an empirical relation
giving (frictionless) wave heights as a function of depth allowed a local ‘power loss’ to
be computed. This power loss was subtracted from the frictionless power driving the
waves and the new wave height estimated pointwise as the shore line is approached.
Application was restricted to a shallow (1 : 300) beach and a steep (1 : 10) beach and
the conclusion was that the reduction of energy due to percolation was significant in
the shallow case but not in the steep case. In fact, in the former case it was found to
be almost equivalent to the frictional loss.

One main aim of the present work is to investigate in the context of a non-
hydrostatic linear model whether the conclusions for the steeper beach are really
justified. Such a model will be required in view of the need to account for vertical
accelerations, and comparison with results from, for example a shallow water theory,
could only be attempted for intermediate slopes, e.g. of order 10%. Moreover, for
steep beaches, we can expect a significant reflection coefficient thus giving credence
to the classical bounded standing wave solution. However, in the present work, whilst
restricting all applications to that fundamental solution, we shall maintain an amount
of mathematical generality in the derivation by also allowing the linearly independent
(logarithmically) unbounded standing wave.

The assumption of a spatially uniform pressure wave at the bottom is strictly only
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valid for horizontal beds and for the case of a steep impermeable beach it is well-
known that the oscillation at the bed is far from uniform in the seaward coordinate.
Recent work by Ehrenmark (1996) has shown, for example, the variable nature of
both the propagation wavenumber and the second-order steady currents up to the
breaker zone resulting from the inclination of the bed. The first order (non-breaking)
flow on steep beaches is described reasonably well by the classical small-amplitude
theory of e.g. Friedrichs (1948) or Stoker (1947) at least until within two or three
wavelengths of the shore line, here assumed fixed for modelling purposes. At these
distances Keller’s (1958) theory followed by the shallow water theory (Lamb 1932, p.
254) should be adopted and this may be coupled (Miles 1990) with capillary/viscous
theory very near the shore line. Ehrenmark (1996) has computed a non-breaking
profile, based on asymptotic matching of the four components, which is uniformly
valid to the shore line and thus provides a mechanism to absorb the large (infinite)
amplitudes associated with the logarithmic singularity of the classical solution for an
incoming progressive wave. This singularity is one which often prevents numerical
modellers from adopting the classical solution to examine the behaviour of the flow
even at considerable distances from the shore: they prefer instead to work with the
conventional constant-depth Airy theory on the assumption that this is sufficiently
accurate.

Notwithstanding the difficulty of a logarithmic singularity at the shore line therefore,
it is proposed here to examine the effect, on the classical non-hydrostatic solution,
of introducing a permeable sub-layer to displace the solid bed by a fixed angle. In
contrast to the work of Putnam, we consider a two-phase interactive flow so that
the effect of the percolation can be measured directly on the wave profile at the
free surface rather than using a method which relies on the application of various
empirical engineering formulae to determine energy losses. In earlier work, Body
& Ehrenmark (1997), the authors discussed the flow when waves on the surface
were coupled with a pumping mechanism at the bed which was chosen so as to
simulate the effect of percolation. Although this one-phase model was somewhat
more artificial than that proposed herein, in that the degree of percolation was
explicit (and therefore provided an inhomogeneous Neumann condition on the bed),
the solutions appeared to indicate a significant dependence between nearshore wave
heights and the amplitude and wavelength of the (spatially oscillatory) pumping
mechanism.

Figure 1 shows the geometry of the model. Under the assumption of uniform
permeability in the sub-layer (D1) the dynamic pressure therein will be a harmonic
function. In the primary flow region (D2) above this, the velocity potential will also
be a harmonic function. The coupling between the two variables is provided by
the interfacial boundary conditions which are taken to be continuity of pressure
and normal velocity component. The tangential velocity component can therefore
be expected to be discontinuous. Otherwise, the conditions are taken as in the
classical problem. Full details of the formulation are given in § 2 and the solutions are
constructed in § 3. These solutions involve a pair of difference equations which may
be solved by the use of the Cauchy integral formula following the method of Peters
(1952). Moreover, in the present work it is shown that, for the particular case where
the permeable layer is also of angular thickness α, these curves may be determined
explicitly and a simple analytical expression is given which agrees exactly with the
numerically produced results. In § 4 we consider the case of small permeability. This
enables a perturbation about the classical solution to be developed from which may
be determined, for example, not only nearshore wave height transformations but also
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Figure 1. Definition diagram.

the effect of the percolation on the reflection coefficients. These are also determined
for a full range of permeability values and bottom slopes and, interestingly, the
shapes of the curves are, in all cases, similar to those discovered by Madsen (1983)
and Mallayachari & Sundar (1994) who examined reflection from respectively a
vertical permeable wave absorber and permeable seawalls. For special bottom slope
angles, one of the difference equations has a closed-form solution which enables
a discussion with less algebraic intricacy and makes the numerical computations
easier.

In § 5 we apply the more specific model of Mallayachari & Sundar (1994) taking
account of frictional effects in the porous region. This problem is also amenable to the
integral transform solution and once again it is found that the reflection coefficient
curves plotted against a viscosity parameter turn out to be qualitatively in agreement
with those obtained analytically in Madsen (1983) using linear shallow water theory
and numerically by Mallayachari & Sundar (1994) using a boundary integral method.
Indeed an exact formula for the reflection coefficient is again determined for the
simpler geometry case which not only vindicates the numerical technique applied in
the other cases but also throws some light on the reason for the curves being of the
given shape. The work is concluded with some remarks in § 6.

2. Problem formulation from D’Arcy’s Law
We investigate the wave-induced flow of a perfect fluid over a porous bed. We

assume the linearized Euler’s equation in the fluid and use conventional Mellin
transforms – defined as F(s) =

∫ ∞
0
Rs−1f(R)dR along with the inversion formula

f(R) =
1

2πi

∫ c0+i∞

c0−i∞
R−sF(s)ds

to solve the resulting mixed boundary value problem following work by Ehrenmark
(1989, 1991). Specifying incoming and outgoing waves at infinity determines the flow
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which in general is singular at the shore line. For a unit reflection coefficient the
potential is regular at the shore line in the absence of percolation.

The flow of inviscid water in irrotational motion is now modelled for small-
amplitude gravity waves over a porous sloping bed. Let α > 0 be the angle of slope
of the porous bed and β ∈ (α, π) be angle of the impermeable bottom to the porous
region (see figure 1 for definition of coordinate system). Velocities are assumed small
so that the linearized equations are applicable.

Within the porous bed we assume that the seepage velocity u is given by D’Arcy’s
law

u = −κ∇(p+ ρgy) for − β < θ < −α.
Here κ = K/µ, µ = dynamic viscosity, K = permeablity, [µ] = ML−1T−1, [κ] =
L3M−1T , [K] = L2, [µ/ρ] = L2T−1. At room temperature kinematic viscosity =
µ/ρ = 10−6 m2 s−1, ρ = 103 Kg m−3, µ = 10−3 Kg m−1 s−1 for water. For sand in SI
units K ∈ (10−12, 10−9), κ ∈ (10−9, 10−6) see Mei (1989, p. 685) for K for various
materials – K is not a property of the fluid. Dean & Dalrymple (1991, p. 277)
investigated waves over a horizontal porous bed at depth h similar to Putnam (1949)
except normal velocities were taken to be continuous across the bed. In Dean &
Dalrymple (1991) it was found that the free surface is given by y = Re exp(ikx− iωt),
ω2 = gkr tanh krh,

ki =
2κωρkr

2krh+ sinh 2krh

to leading order for κ small, where kr = Re(k), ki = Im(k). The parameter ν = ω2/g,
[ν] = L−1 defines a length scale for our problem.

Let S1 = {(x,−x tan β) : x > 0}, S2 = {(x, 0) : x > 0}, S3 = {(x,−x tan α) : x > 0}
and D1 = {(x, y) : −x tan β < y < −x tan α < 0}, D2 = {(x, y) : −x tan α < y < 0}.
So D1 is porous material and D2 is the undisturbed water. Dean & Dalrymple
(1991, p. 279) state that u · n, p are continuous at S3 (tangential component of u is
discontinuous). Assume u = εRe(exp(iωt)∇φ̃) in D2, p+ ρgy = εRe(exp(iωt)p̃) in D1

where ε is a small ordering parameter. From a continuity equation in D2,

∇2φ̃ = 0 (2.1)

and from a continuity equation in D1

∇2p̃ = 0. (2.2)

The linearized Euler equation is ut = −∇p/ρ− gj , and we write further

p = −ερωRe(iφ̃ exp(iωt))− gyρ+ w1(t) in D2

where w1 is an arbitrary function of t which is set to zero. At the rigid boundary S1 we
adopt the usual condition of zero normal flow, i.e. u · n = 0. Let φ̃ = φ(1) + iφ(2), p̃ =
p(1) + ip(2) where φ(j), p(j) are real. There follows

u =

{
−κε(∇p(1) cosωt− ∇p(2) sinωt) = −κεRe(exp(iωt)∇p̃) in D1

ε(∇φ(1) cosωt− ∇φ(2) sinωt) = εRe(exp(iωt)∇φ̃) in D2 ,

p =

{
−ρgy + ε(p(1) cosωt− p(2) sinωt) = −ρgy + εRe(exp(iωt)p̃) in D1

−ρgy + εωρ(φ(1) sinωt+ φ(2) cosωt) = −ρgy − εωρRe(i exp(iωt)φ̃) in D2 ,

η =
εω

g
(φ(1) sinωt+ φ(2) cosωt) = −εω

g
Re(i exp(iωt)φ̃), on S2. (2.3)
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Here η is found by assuming constant pressure at the free surface.
The kinematic condition at S1 leads to p(1)θ = p(2)θ = 0 at S1 which implies

p̃θ = 0 at θ = −β. (2.4)

The continuity of u · n at S3 leads to

φ̃θ = −κp̃θ at θ = −α. (2.5)

The continuity of p at S3 implies

p̃ = −iωρφ̃ at θ = −α. (2.6)

The kinematic condition at S2 gives ηt = εRe(eiωtr−1φ̃θ) so that

φ̃θ = rνφ̃ at θ = 0. (2.7)

We non-dimensionalize the problem given by putting rν = R, φ̃ = φ̃ndg
2/ω3,

p̃ = p̃ndρg
2/ω2. After substituting in (2.1), (2.2), (2.4), (2.5), (2.6), (2.7) and dropping

subscripts (2.1), (2.2), (2.4) are unaffected and (2.5), (2.6), (2.7) become respectively

φ̃θ = −ε̂p̃θ at θ = −α, (2.8)

p̃ = −iφ̃ at θ = −α, (2.9)

φ̃θ = Rφ̃ at θ = 0, (2.10)

where ε̂ = κωρ. Let us denote problem (2.1), (2.2), (2.4), (2.8), (2.9), (2.10) as problem
(P).

3. Solution using Mellin transforms
In this section we obtain an analytic solution of (P) where φ̃(R, 0) is oscillatory at

infinity. To keep the most generality we first obtain φ̃, p̃ which in general are singular
at the shore line. Let P (s, θ), θ ∈ (−β,−α), Φ(s, θ), θ ∈ (−α, 0) be the Mellin transforms
of p̃(R, θ), φ̃(R, θ) respectively, i.e.

P (s, θ) =

∫ ∞
0

Rs−1p̃(R, θ)dR, Φ(s, θ) =

∫ ∞
0

Rs−1φ̃(R, θ)dR.

Then from (2.4),(2.10) we obtain formally

Φ = A(s) cos sθ + A(s+ 1)s−1 sin sθ, (3.1)

P = A1(s) cos s(θ + β), (3.2)

and from (2.8),(2.9) respectively

sA(s) sin sα+ A(s+ 1) cos sα = ε̂sA1(s) sin s(β − α), (3.3)

A1(s) cos s(β − α) = −i(A(s) cos sα− s−1A(s+ 1) sin sα). (3.4)

We eliminate A1 from (3.3),(3.4) and we then substitute A(s) = λ(s)Γ (s)d(s)c(s) (where
λ(s) is any period-1 function) and

c(s+ 1)/c(s) = − tan sα (3.5)

in the resulting equation to give

d(s+ 1) = d(s)h(s), (3.6)
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where

h(s) =
1 + iε̂ tan s(β − α) cot sα

1− iε̂ tan s(β − α) tan sα
. (3.7)

The difference equation (3.5) has been discussed in Ehrenmark (1989, 1991) in
solving the impermeable (κ = 0) bed problem. For α = π/(2m), m ∈ N an explicit
solution of (3.5) is

c(s) = 2m−1

m−1∏
j=0

cos α(s+ j) (3.8)

which was given in Ehrenmark (1991); for general α, c(s) is given as an integral which
must be solved numerically (Ehrenmark 1991). The factor 2m−1 in (3.8) scales φ̃ so
that the wave has unit amplitude at infinity for unscaled λ (we could scale λ instead).

Writing the difference equation (3.6) as log(d(s+ 1))− log(d(s)) = log(h(s)) we can
use the Cauchy formula to express a solution in the form

d(s) = exp(i

∫ ∞
−∞

log(h(xi))/(1− exp(2π(x+ is)))dx), 0 < Re(s) < 1. (3.9)

The original difference equation (3.6) can then be used to extend the domain of
definition of d. The integral expression (3.9) satisfies limε↓0 d(1 + it − ε)/d(it + ε) =
h(it), t ∈ R, provided h(s) is Holder continuous on Re(s) = 0. The function d defined
above is analytic in the region 0 6 Re(s) 6 1.

From (3.1),(3.2)

Φ = Γd λ c [cos sθ − h(s) sin sθ tan sα], (3.10)

P = −iΓd λ c cos s(θ + β)[cos sα+ h(s) sin2 sα sec sα]/ cos s(β − α)⇒

P = − iΓd λ c cos s(θ + β) sec sα

(1− iε̂ tan s(β − α) tan sα) cos s(β − α) . (3.11)

We need to choose λ so that φ̃(R, 0) has unit-amplitude oscillatory behaviour at
infinity. We will make use of results like

1

2πi

∫ c0+i∞

c0−i∞
R−sΓ (s) sin(s(θ + π/2) + ε0) ds = exp(R sin θ) sin(R cos θ + ε0),

where c0 > 0,−π 6 θ 6 0 and ε0 is arbitrary and is absolutely convergent for
−π < θ < 0 and only conditionally convergent for θ = 0,−π. We have

φ̃(R, θ) = φ∞ +
1

2πi

∫ c0+i∞

c0−i∞
{Φ− Γ (s) sin(s(θ + π/2) + ε0)}R−s ds,

where

φ∞ = exp(R sin θ) sin(R cos θ + ε0), 0 < c0.

For limR→∞ φ̃(R, 0)− φ∞(R, 0) = 0 we need

Φ(s, 0)− Γ (s) sin(sπ/2 + ε0) = Γ (s)(d(s)λ(s)c(s)− sin(sπ/2 + ε0))

to be absolutely integrable on Re(s) = c0. We note that

Γ (c0+it) ∼ (2π)1/2 exp[(iπ/2)sgn(t)(c0−1/2)]|t|c0−1/2 exp(it log |t|)e−ite−π|t|/2 as t→ ±∞,
and c(s) ∼ sin( 1

2
πs+ γm) as Im(s)→ ±∞ where γm = 1

4
π(1 + m). Let

d∞ = lim
t→+∞

d(c0 + it)
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and note from (3.9) limt→−∞ d(c0 + it) = 1, h(c0 + i∞) = h(c0 − i∞) = 1. From (3.9)

d∞ = exp

(
i

∫ ∞
−∞

log h(xi)dx

)
. (3.12)

Hence we need limIm(s)→+∞ λ(s) = ei(γm−ε0)d−1
∞ , limIm(s)→−∞ λ(s) = ei(ε0−γm). We therefore

put

λ(s) =
exp(i(ε0 − γm) + 2πis)− exp(−i(ε0 − γm))/d∞

exp(2πis)− 1
.

The Mellin transform P with the above λ is absolutely integrable along the inversion
contour. Meanwhile the Mellin transform of the normal velocity on the bed is, from
(3.10),

Φθ(s,−α) = Γdλcs(1− h(s)) sin sα.

There is an additional requirement for (2.10) to be satisfied, namely Φ(s, 0) analytic in
0 < c0 6 Re(s) 6 c0 + 1. Because Φ(s, 0) = Γ (s)d(s)λ(s)c(s), λ has a simple pole at 1,
c has a zero at 1, Γ is analytic in the strip concerned, d is analytic in 0 6 Re(s) 6 1,
h(s) analytic in 0 6 Re(s) 6 c0 for c0 small, a sufficient condition is to take c0 positive
and sufficiently small. A sufficient condition for c0 is 1 − iε̂ tan s(β − α) tan sα 6= 0,
∀0 6 Re(s) 6 c0. The positions of the zeros and the poles of h can be found
exactly in the two special cases β = 2α (h(s) = (1 + iε̂)/(1 − iε̂ tan2 sα)) and β = 3α
(h(s) = (1 + iε̂ − tan2 sα)/(1 − (2iε̂ + 1) tan2 sα)). Equations (3.10),(3.11) provide a
solution for any angle β ∈ (0, π].

From § 2 u = Re(exp(iωt)∇φ̃)(without loss of generality ε = 1) so that if the
complex reflection coefficient is denoted Rf then φ̃(R, 0) ∼ C(eiR + Rfe

−iR), R → ∞
(this is assuming that ω > 0) where C is a constant. Equivalently

φ̃(R, 0) ∼ C(1 + Rf) cosR + iC(1− Rf) sinR. (3.13)

Given that

λ(s) =
exp(i(ε0 − γm) + 2πis)− exp(−i(ε0 − γm))/d∞

exp(2πis)− 1
⇒ φ̃(R, 0) ∼ sin(R + ε0)

we now take one solution with ε0 = 1
2
π and another with ε0 = 0. Adding the

appropriate multiples we have, for the solution which has the asymptotic behaviour
(3.13),

λ(s) = (exp(2πis)− 1)−1C[(Rf + 1)(exp(i(−γm + π/2) + 2πis)− exp(iγm − iπ/2)/d∞)

+i(1− Rf)(exp(−iγm + 2πis)− exp(iγm)/d∞)]

⇒ λ(s) = 2iC(exp(2πis)− 1)−1(e2πis−iγm + Rfe
iγm/d∞). (3.14)

Now by a general result on asymptotics of inverse Mellin transforms (Oberhettinger
1974, Theorem 7, p. 7) we have φ̃(R, θ) is bounded at R = 0 if Φ(s, θ) has at most a
simple pole at s = 0 if λ(s) is bounded at s = 0 if Rf = −e−2iγmd∞. That is from (3.12)

Rf = −e−2iγm exp

(
i

∫ ∞
−∞

log h(xi) dx

)
. (3.15)

The real reflection coefficient is Kr = |Rf | = |d∞|. Note that

|d∞| = exp

(
−
∫ ∞
−∞

arg(h(xi))dx

)
,
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Figure 2. Reflection coefficients determined from (3.15) (a) ——–, α = π/2; – – –, α = π/4; - - -,
α = π/8 and in all cases β = 2α. (b) ——–, α = π/16; – – –, α = π/32; - - -, α = π/64 and in all
cases β = 2α.

where arg ∈ (−π, π). Note also Kr 6 1 from the physical consideration that over-
reflection is not anticipated and this can be deduced from (3.15) because Im(h(xi)) > 0,
∀x ∈ R. For the classical problem κ = 0, d∞ = 1 and Rf = − exp(−2iγm) for the
regular standing wave, Rf = exp(−2iγm) for the singular standing wave.

In figure 2 (3.15) is integrated numerically to give reflection coefficients for arbitrary
permeability. There is less reflection from shallow beaches than from steep beaches
because waves incident on the former tend to break. In Appendix A it is demonstrated
that, for the special case β = 2α, it is possible to obtain Kr explicitly. This allows us
to establish also that the minimum value of Kr occurs at ε̂ = 2.2016 independently
of α.

4. Solution for small permeability
The parameter ε̂ (ε̂ is non-dimensional) is in the range 10−6–10−3 for gravity waves

of frequency ω = 1, that is it is small so we try a regular perturbation expansion
(about the classical solution). We find from a regular expansion of (3.10),(3.11)

h(s) = 1 + ε̂h1(s) + O(ε̂2), h1(s) = i tan s(β − α) sec sα cosecsα,

d(s) = 1 + ε̂d1(s) + O(ε̂2), λ = λ0 + ε̂λ1 + O(ε̂2), φ̃ = φ0 + ε̂φ1 + O(ε̂2),

d1(s+ 1)− d1(s) = h1(s), (4.1)
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P (s, θ) = P0 + ε̂P1 + O(ε̂2), P0 = −iΓ (s)λ0(s)c(s) sec sα sec s(β − α) cos s(θ + β),

P1 = Γλc cos s(θ + β) sec sα sec s(β − α)(−iλ0d1 + λ0 tan s(β − α) tan sα− iλ1),

Φ(s, θ) = Φ0 + ε̂Φ1 + O(ε̂2),

Φ0 = Γ (s)λ0(s)c(s) cos s(θ + α) sec sα, (4.2)

Φ1 = Γ (s)c(s)((d1(s)λ0 + λ1) cos s(θ + α) sec sα− λ0h1(s) sin sθ tan sα). (4.3)

After substituting d∞ = 1+ ε̂d1
∞+O(ε̂2), d1

∞ = limIm(s)→+∞ d1(s) into (3.14) and expand-
ing in powers of ε̂ we find

λ0 = 2i(e2πis−iγm + Rfe
iγm)/(e2πis − 1), λ1 = −2id1

∞Rfe
iγm/(e2πis − 1).

Note that Φθ(s,−α) = ε̂Φ1θ(s,−α) + O(ε̂2),

Φ1θ(s,−α) = −h1(s)cΓλ0s sin sα = iΓ (s)λ0(s)c(s)s tan s(β − α) sec sα

which is explicit and does not involve d1; hence we can find φ1θ(R,−α). Also
P0 does not depend on d1 so it is explicit. Because Φ1 is absolutely convergent,
limR→∞ φ1(R, θ) = 0 so Rf really is the reflection coefficient which is assumed fixed.

The inversion formula gives φ1(R, θ) = (1/2πi)
∫ c0+i∞
c0−i∞ R

−sΦ1(s, θ)ds and a similar for-
mula for p1 with the same c0. The contour is chosen so that Φ1(s, 0) is regular in
c0 6 Re(s) 6 c0 + 1,φ1(R, θ) bounded at R = ∞ and φ1(R, θ) has as weak a singularity
at R = 0 as possible.

The difference equation (4.1) has a solution

d1(s) = i

∫ ∞
−∞

h1(xi)

1− e2π(is+x)
dx, 0 < Re(s) < 1, (4.4)

but for some special cases d1 can be found explicitly. Suppose β = nα, n > 1 is
an integer. We find that d1(s) = (1/2m)

∑2m−1
j=0 (s + j)h1(s + j) satisfies (4.1) because

h1 is 2m-periodic. If n is odd then d1(s) = − 1
2

∑m−1
j=0 h1(s + j) satisfies (4.1) because

h1(s+m) = −h1(s). In particular if n = 3 then h1(s) = −2i sec 2sα and we need m even
and λ ≡ 1 (regular standing wave) or m odd and λ = cot πs (singular standing wave)
for Φ1(s, 0) = Γ (s)c(s)d1(s)λ(s) to be analytic in 0 < c0 6 Re(s) 6 c0 + 1. For all the
explicit solutions d1

∞ = 0.
Two limits of interest are ε̂ = 0 ⇒ Rf = − exp(−2iγm) and ε̂ = ∞, h(̄s) = h̄(s),

Kr = 1. The lemma given in Appendix B justifies the first-order (in ε̂) perturbation
of Rf as

Rf = −e−2iγm(1− ε̂I + O(ε̂2)). (4.5)

Let us consider some simple special cases of the type α = β/n. It is easy to
work out β = 2α,⇒ Kr = 1 − (2/α)ε̂ + O(ε̂2), β = 3α,⇒ Kr = 1 − (π/α)ε̂ + O(ε̂2),

β = 4α,⇒ Kr = 1− ( 2
3

+ π
√

3 16
27

)ε̂/α+ O(ε̂2).
Substituting

φ̃ = φ0 + ε̂φ1 + O(ε̂2), (4.6)

p̃ = p0 + O(ε̂) directly into problem (P) gives ∇2φi = ∇2p0 = 0,

p0θ(R,−β) = 0, φ0θ(R, 0) = Rφ0(R, 0), φ1θ(R, 0) = Rφ1(R, 0),

φ0θ(R,−α) = 0, p0θ(R,−α) = −φ1θ(R,−α), p0(R,−α) = −iφ0(R,−α).
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Figure 3. Dimensionless corrections to potentials (case of small percolation)
α = π/8, β = 3π/8, Rf = 0.
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Figure 4. Relative reduction in wave height for small percolation, (wave height at R)/(wave height
at infinity)=1+ε̂Y , ——–, α = π/8; - - -, α = π/16; – – –, α = π/32; in all cases β = 3π/8.

When Im(φ0) = 0 (which implies a standing wave to leading order) then Re(p0) =
Re(φ1) = 0 and hence Re(exp(iωt)p̃) = −Im(p0) sinωt+ O(ε̂),

Re(exp(iωt)φ̃) = Re(φ0) cosωt− ε̂Im(φ1) sinωt+ O(ε̂2).

Hence a small amount of percolation induces progressing behaviour near the shore
line in a wave which has standing behaviour at infinity. Moreover, the solution
which is regular at the origin will now contain an element of progressing nature
at infinity. Figure 3 displays the O(ε̂) dimensionless corrections to potential induced
by the percolation. Shown also are first-order potentials for comparison. The beach
is chosen steep. Figure 3 is calculated by taking the inverse Mellin transforms of
(4.2),(4.3) on the contour Re(s) = 1

2
, for the case Rf = 0, and the function d1

has to be tabulated using (4.4) because explicit solutions are not available due to
the progressive nature of wave at infinity. The (dimensional) wave amplitude, A,
from (2.3) is A = max{|η(R, t)| : t} = εωg−1|φ̃(r, 0)| = ν−1ε|φ̃nd(R, 0)| and after
substituting from (4.6) A = εν−1|φ0 + ε̂φ1 + O(ε̂2)|. Hence wave amplitude equals
A = εν−1|φ0|(1 + ε̂Re(φ0φ̄1)/|φ0|2) + O(ε̂2) because ε̂ is real.

We plot Y = Re(φ0φ̄1)/|φ0|2 against R in figure 4 to show the reduction in wave
height due to percolation as the wave approaches the shore line, for various slope
angles α.
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5. Model with inertia in the bed flow
In Sollitt & Cross (1972) an alternative to D’Arcy’s law to model frictional flow in

porous media was derived and used to study rubble breakwaters. The fundamental
governing equations for the seepage velocity are

ut = − ν̃
ρ
px − fu, vt = − ν̃

ρ
(p+ ρgy)y − fv,

where ν̃ = porosity∈ (0, 1] = fraction of volume of porous medium made up of air (i.e.
pores), f = bed friction, f > 0, [ν̃] = 1, [f] = T−1. In Mallayachari & Sundar (1994)
the same equations were used to study a wave absorber with a free surface in the
porous region and solutions were determined numerically using the boundary integral
method. This model applies to sea walls made of rubble, not to sandy beaches. This
enables evaluation of the reflection coefficient for both vertical and sloping walls.
In the present work we consider instead a simplified model with no free surface in
the porous region. In this way the difference equation for the Mellin transform of φ
remains first order.

In D2, u = ∇φ, φ = εRe(exp(iωt)φ̃), p+ ρgy = −ερRe(exp(iωt)iωφ̃), and in D1, u =
∇φp, φp = εRe(exp(iωt)φ̃p), p+ ρgy = ρν̃−1(−φpt − fφp) = −ερν̃−1Re(exp(iωt)φ̃p(iω+
f)) from the momentum equations. From the continuity equations,

∇2φ̃ = 0, ∇2φ̃p = 0. (5.1)

The condition at the impermeable wall is

φ̃
p
θ = 0 at θ = −β. (5.2)

From continuity of u · n at S3 we get

φ̃θ = φ̃
p
θ at θ = −α. (5.3)

From continuity of p at S3 we get

κ̂φ̃ = φ̃p at θ = −α, (5.4)

where κ̂ = ν̃/(1 + f/(iω)) which is non-dimensional. The free-surface condition is

φ̃θ = rνφ̃. (5.5)

We non-dimensionalize by rν = R, φ = g2ω−3φnd, φ̃ = g2ω−3φ̃nd, ν = ω2/g and
dropping subscripts (5.1)–(5.4) are unchanged and (5.5) becomes

φ̃θ = Rφ̃ at θ = 0.

As before, taking Φ, φ̃ as the Mellin transforms of φ̃, φ̃p respectively, we can write
φ̃ = A1(s) cos s(θ + β), Φ = A(s) cos sθ + s−1A(s + 1) sin sθ, and by (5.3),(5.4) there
follows

−sA1(s) sin s(β − α) = sA(s) sin sα+ cos sαA(s+ 1),

A1(s) cos s(β − α) = κ̂(A(s) cos sα− s−1A(s+ 1) sin sα).

Again we write A(s) = d(s)c(s)Γ (s)λ(s), λ of period 1, and we get d(s+ 1)/d(s) = h(s)
where

h(s) =
1 + κ̂ tan s(β − α) cot sα

1− κ̂ tan s(β − α) tan sα
. (5.6)
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Figure 5. Reflection coefficients for porous model by (3.15), where h is given in (5.6),
α = π/2, β = π, ——–, ν̃ = 0.2; – – –, ν̃ = 0.4; - - -, ν̃ = 0.6; — — —, ν̃ = 0.8.

Note the similarity between (3.7) and (5.6). We get (3.10) for Φ, (3.14) for λ and

Φ̃ = cos(s(θ + β)) sin sαc(s)Γ (s)λ(s)(h(s)− 1)d(s)/ sin(s(β − α))
= 2κ̂ cos s(θ + β)cΓλ sec s(β − α) sec sα(1− κ̂ tan s(β − α) tan sα)−1.

As in § 3, for surface boundary condition (2.10) to be satisfied Φ(s, 0) must be analytic
in c0 6 Re(s) 6 c0 + 1 so h needs to be analytic in 0 6 Re(s) 6 c0. If β = 2α a
sufficient condition for this is α−1|Re tan−1 κ̂−1/2| > c0 which is true if c0 is sufficiently
small.

If ν̃ is small then Rf = − exp(−2iγm)(1+2iκ̂α−1J(β−α)/(2α))+O(κ̂2) where Jλ is defined
in Appendix B. We deduce that

Kr = 1− 2ν̃fα−1ωJ(β−α)/(2α)
1

ω2 + f2
+ O(ν̃2),

showing the dependence of Kr on f/ω seen in figure 5.

Along inversion contour |h(s)−1| = O(e−2α|Im(s)|) so φ̃ = O(e−α|Im(s)|), limR→∞ φ̃
p = 0.

The reflection coefficient Rf is given by (3.15) and Rf is function of α, β, κ̂ alone.

There are two limits which may be interesting: f/ω = 0, κ̂ = ν̃, h(̄s) = h̄(s),⇒ Kr = 1
and f/ω = ∞, κ̂ = 0⇒ Rf = − exp(−2iγm).

If β = nα then

Rf = − exp(−2iγm)

exp(α−1

∫ ∞
−∞

i log((1 + κ̂ tanh(n− 1)w cothw)/(1 + κ̂ tanh(n− 1)w tanhw))dw).

In figure 5 we plot Kr against f/ω showing the expected decline in Kr as f/ω
increases for f/ω small as well as the decrease of Kr as ν̃ increases. Similar results
for Kr are found in Mallayachari & Sundar (1994) and looking at Kr as a function
of ω the results in figure 5 are similar to those, using D’Arcy’s law, shown in figure
2. In figure 6 we plot Kr against α showing a decrease in Kr as α decreases.

Following the approach of Appendix A, for β = 2α as assumed in figure 6, we find,
after some labour,

Kr = exp

{
2

α
Im
(

(tan−1(κ̂1/2))2
)}

. (5.7)

The plot of this agrees exactly with the numerically computed result.
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Figure 6. Reflection coefficients for porous model by (3.15),(5.6) f/ω = 2, ν̃ = 1/2, β = 2α.

ν̃ f/ω Kr (Mallayachari & Sundar 1994) Kr(from (5.7))

0.2 1 0.69 0.89
0.4 1 0.50 0.82
0.6 1 0.35 0.77
0.8 1 0.22 0.73
0.5 0.25 0.33 0.91
0.5 1 0.40 0.79
0.5 3 0.6 0.84
0.5 5 0.70 0.88

Table 1. Comparison of Kr with Mallayachari & Sundar (1994), α = π/2

6. Conclusions
The model presented herein represents a contribution to the growing number of

‘analytical’ solutions describing the response to wave attack on a beach face. Many of
these models can only be used qualitatively in view of the simplifications made (the
more severe of these are normally the linearization and non-breaking assumptions)
but there are many recorded cases of such models performing well at least some
few wavelengths from the shore line. The results from the present model appear to
be in qualitative agreement with those of the parallel studies of Madsen (1983) and
Mallayachari & Sundar (1994) (see table 1), and with the main perturbation to the
classical model arising from a submarine alteration it should be no more affected by
the two idealizations referred to above than the comparative works.

There are two responses particularly under scrutiny. On the one hand, the wave
amplitude modification by bottom percolation and friction has been considered
quantitatively, although here limitations of validity are somewhat more severe with
one of the fundamental frictionless solution pairs being singular at the shore line.
Nevertheless, for the regular wave considered, the reduction in amplitude is displayed
graphically and it is found, for steep beaches, that the results of Putnam (1949) are,
at least qualitatively, vindicated. Of great interest also, for obvious reasons of sea
defences and induced bottom currents, is the effect of the bed configuration on the
reflection coefficient of the surface waves. Extensive computations were undertaken
and backed up by exact expressions available for particular geometry and the results
reveal a remarkable similarity to those of the permeable sea-wall studies of Madsen
(1983) and in many cases there are even greater reductions in reflection by the
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proposed configurations. Whether this is entirely desirable in a real situation remains
open to question. Many authors (e.g. Davies & Heathershaw 1984) have studied the
possibility of bottom variations increasing reflection of shorebound waves in order
(possibly) to increase protection of the beach environment. On the other hand, in
the case of breakwaters and absorbers, Mallayachari & Sundar (1994) argue that
reflection is often undesirable as it causes standing waves leading to erosion and
undermining of structures. Whichever point of view is adopted in a given situation,
it is clear that there is need for further understanding of these phenomena and
modifications to the present model to include more realistic bed configurations, and
also bottom undulations, to enhance scattering, should be a further objective of study,
where the present model could usefully provide calibration for numerical studies.

The authors are grateful to the Leverhulme Trust for funding under grant number
F/405/B.

Appendix A. Exact expression for D’Arcy law reflection coefficient
In this Appendix tan−1 ∈ (−π/2, π/2). From (3.15)

logKr = −
∫ ∞
−∞

arg(h(xi)) dx,

where

h(xi) =
1 + iε̂ tanh x(β − α) coth xα

1 + iε̂ tanh x(β − α) tanh xα
.

Figure 2 has β = 2α so that

h(xi) =
1 + iε̂

1 + iε̂ tanh2 xα
.

Thus

logKr =

∫ ∞
−∞

tan−1(ε̂ tanh2 xα)− tan−1 ε̂ dx.

We differentiate under the integral with respect to ε̂ and substitute u = tanh xα

K ′r/Kr =
1

1 + ε̂2

∫ ∞
−∞

(1− tanh2 xα)(ε̂2 tanh2 xα− 1)

1 + ε̂2 tanh4 xα
dx =

α−1

1 + ε̂2

∫ 1

−1

ε̂2u2 − 1

1 + ε̂2u4
du.

Hence

K ′r/Kr = − 1

2α
(f1f2)

′, f1 = log
1 + ε̂+ (2ε̂)1/2

1 + ε̂− (2ε̂)1/2
,

f2 =


tan−1 (2ε̂)1/2

1− ε̂ if ε̂ < 1

π − tan−1 (2ε̂)1/2

ε̂− 1
if ε̂ > 1.

Therefore

Kr = exp

(
− 1

2α
f1f2

)
.
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Appendix B. Reflection coefficient for small ε̂

Lemma 1. We have

Rf = −e−2iγm(1− ε̂I + O(ε̂2)), Kr = 1− ε̂I + O(ε̂2),

where

I = 2

∫ ∞
−∞

tanh x(β − α)cosech2αxdx =
1

α
J(β−α)/(2α),

Jλ =

∫ ∞
−∞

tanh λw cosechw dw.

Proof. From (3.15) it suffices to show i
∫ ∞
−∞ log h(xi)dx = −ε̂I + O(ε̂2). Note that

h(xi) = 1 + 2iε̂ tanh x(β − α)cosech2αx+ ε̂2h0(x, ε̂)

where h0(x, ε̂) = 2(1 + ε̂i tanh x(β − α) tanh xα)−1 tanh2 x(β − α) tanh xαcosech2αx. Be-
cause ε̂, x ∈ R, we have |h0(x, ε̂)| 6 sech2xα, ∀x ∈ R. For |z| < a < 1 | log(1 + z)− z| <
|z|2(1− a)−1 so for ε̂ sufficiently small that |h(xi)− 1| < a, ∀x then

| log h(xi)− 2iε̂ tanh x(β − α)cosech2αx| < |ε̂2h0(x, ε̂)|+ |h(xi)− 1|2(1− a)−1, ∀x.
Hence∣∣∣∣ ∫ ∞

−∞
i log h(xi) + 2ε̂ tanh x(β − α)cosech2αx dx

∣∣∣∣ < ε̂2

∫ ∞
−∞
|h0(x, ε̂)|dx

+(1− a)−1

∫ ∞
−∞
|2iε̂ tanh x(β − α)cosech2αx+ ε̂2h0(x, ε̂)|2dx

< 2ε̂2α−1 + (1− a)−1

∫ ∞
−∞

4ε̂2 tanh2 x(β − α)cosech22αx+ ε̂4sech4αx dx = O(ε̂2).

Note that Jm = (π/m)
∑m−1

j=0 cosec(π/m)(j + 1
2
) if m is an integer.
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